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Fig. 1: Overview of X-DIFFUSION: We introduce X-DIFFUSION, a framework to train diffusion policies on cross-embodiment human data containing a
variety of execution styles. Naively co-training diffusion policies on human and robot datasets with mismatched dynamics can lead the denoising process
to output dynamically infeasible actions for the robot, degrading performance below standard robot-only diffusion policy training. Instead, X-DIFFUSION
trains a classifier to distinguish between noised human and robot actions, and integrates noised human actions into policy training only when the classifier
is unsure of which embodiment produced the actions, thus, effectively learning from large and diverse human demonstrations.

Abstract— Human videos can be recorded quickly and at
scale, making them an appealing source of training data
for robot learning. However, humans and robots differ fun-
damentally in embodiment, resulting in mismatched action
execution. Direct kinematic retargeting of human hand motion
can therefore produce actions that are physically infeasible for
robots. Despite these low-level differences, human demonstra-
tions provide valuable motion cues about how to manipulate
and interact with objects. Our key idea is to exploit the forward
diffusion process: as noise is added to actions, low-level execu-
tion differences fade while high-level task guidance is preserved.
We present X-DIFFUSION, a principled framework for training
diffusion policies that maximally leverages human data without

∗ Equal contribution. † Equal advising.

learning dynamically infeasible motions. X-DIFFUSION first
trains a classifier to predict whether a noisy action is executed
by a human or robot. Then, a human action is incorporated
into policy training only after adding sufficient noise such that
the classifier cannot discern its embodiment. Actions consistent
with robot execution supervise fine-grained denoising at low
noise levels, while mismatched human actions provide only
coarse guidance at higher noise levels. Our experiments show
that naive co-training under execution mismatches degrades
policy performance, while X-DIFFUSION consistently improves
it. Across five manipulation tasks, X-DIFFUSION achieves a
16% higher average success rate than the best baseline.

https://portal-cornell.github.io/X-Diffusion/


I. INTRODUCTION

Imitation learning (IL) is an effective and flexible method
for teaching robot skills, but collecting large amounts of
robot data is costly and slow. Human video demonstrations
offer a scalable alternative, since they are easier and faster to
collect. However, such data cannot be directly used to train
state-of-the-art IL methods [1, 2], since humans and robots
significantly differ in embodiment.

To leverage human data, recent works aim to unify human
and robot action spaces [3–5]. Utilizing advances in 3D hand-
pose estimation [6], hand motions recorded from human
videos can be converted into robot actions via kinematic
retargeting. Consequently, these methods have been applied
to crowd-sourced human video collection [7, 8] and datasets
of egocentric human videos [9, 10]. Nevertheless, these
approaches typically rely on fine-tuning with robot teleop-
eration data to produce actions compatible with the robot’s
kinematics and dynamics. If final robot performance is the
goal, is it optimal to train on all human demonstrations
indiscriminately — or can some demonstrations, mismatched
in execution with the robot, hurt policy learning?

We study this problem setting where we have access
to a large dataset of human demonstrations, and a small
dataset of high-quality robot teleoperation data. Even for the
same manipulation task, humans and robots often differ in
execution style. For example, in Fig. 1, when tasked with
moving a plate on the table, a human can dexterously slide
their fingers underneath to pick and place it. However, a
robot with a parallel-jaw gripper may more reliably push or
slide the plate across the table. Even with such differences in
action execution, human videos still provide rich motion cues
about how objects should be manipulated and interacted with.
In diffusion policy learning, as noise is added to both human
and robot actions, these low-level discrepancies start to fade
away, preserving high-level guidance on how to complete
the task. Our key insight is that training diffusion policies
on noised human actions can improve task performance
without sacrificing robot feasibility.

We propose X-DIFFUSION, a framework for co-training
diffusion policies with large-scale human demonstrations and
a smaller set of robot teleoperation data (Fig. 1). Before
policy training, we train a classifier to distinguish between
noised human and robot actions in the forward diffusion pro-
cess. To maximally leverage human data without introducing
dynamically infeasible behaviors, we define the minimum
indistinguishability step: the earliest diffusion step at which
the classifier can no longer discern whether an action comes
from a human or a robot. Actions that are compatible with
robot kinematics and dynamics are integrated at lower noise
levels, while actions that diverge from the robot’s execution
style are only included at higher noise levels. As a result, fea-
sible human and robot demonstrations provide precise, low-
level supervision throughout the diffusion process, whereas
mismatched human actions contribute only coarse, high-
level guidance. This enables our method to extract useful
signal from all human data while avoiding degradation from

execution mismatches. Our contributions:
1) We propose X-DIFFUSION, a framework for training

diffusion policies on cross-embodiment human data while
preserving dynamically feasible robot motions.

2) We demonstrate that prior methods that train on all human
demonstrations often generate infeasible robot actions.
Through ablations and analyses, we demonstrate that our
selective training strategy outperforms both naive co-
training and manual human annotation.

3) Across 5 manipulation tasks, we show that X-DIFFUSION
outperforms a range of cross-embodiment learning base-
lines by 16% on average.

II. RELATED WORK

Our work is related to the following topics:
Learning from Human Hand Motion. Human videos

typically lack action annotations that can be directly executed
by robots. Recent progress in hand-pose estimation has
enabled retargeting human hand motion into robot actions.
A common approach is to track 6DoF hand trajectories
and map them to the robot end-effector [11–13], which
is particularly effective for dexterous robotic hands [14–
17]. Other works define corresponding keypoints between
human and robot hands [3, 4] to unify their state and action
spaces. Retargeting has also been leveraged to synthesize
robot data by overlaying rendered robot arms on human
videos [5, 18, 19]. When combined with open-world vision
models, these methods can further enable object-aware re-
targeting of human motion [20–22]. While promising, these
approaches often assume that every human hand motion can
be feasibly executed by a robot. This assumption breaks
down in practice, as many human actions involve kinemat-
ics or dynamics outside a robot’s capabilities, limiting the
reliability of direct retargeting.

Extracting Rewards from Human Data Beyond imita-
tion, reinforcement learning (RL) can leverage human data
by defining rewards from tracking reference motion [23, 24],
video similarity [25–27], language alignment [28, 29], or
object-centric signals in real-to-sim-to-real pipelines [30–32].
Preference learning methods further derive rewards from ob-
ject interactions or classifier judgments of task success [33–
36]. However, a common limitation of all these approaches is
the requirement of a realistic simulator or costly and unsafe
real-world environment interactions for RL. In contrast, we
train diffusion policies directly on mixed human–robot data
without requiring interactions with the environment to learn
actions that match rewards extracted from human videos.

One-Shot Imitation from Human Videos. Without a
direct mapping from human to robot actions, prior work
has explored one-shot imitation, where robots attempt a task
after a single human demonstration. Some methods learn
correspondences from paired human–robot videos [38, 39],
but such datasets are costly to scale. Others unify visual
embeddings of humans and robots [40, 41], yet require
large teleoperated robot datasets. Recent works have framed
one-shot imitation as an in-context learning problem, where
the human video acts a guide to retrieve the task-relevant
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Fig. 2: Pipeline: X-DIFFUSION first unifies the state and action representation. State is represented by a colored segmentation mask of relevant objects
using Grounded-SAM2 [37]. Action is represented via end-effector/human hand pose utilizing HaMeR [6] for retargeting. During the policy’s forward
diffusion process, Gaussian noise is sampled and added to the clean actions. To determine if the policy should learn to denoise noisy human actions into
robot actions, X-DIFFUSION utilizes a classifier trained to distinguish the source embodiment of noised actions. Actions are only included for training the
denoising process if the classifier is fooled into thinking it’s from a robot. Thus, we learn from broad human data without learning infeasible actions.

behaviors [42, 43]. DemoDiffusion [44] is a diffusion-based
approach that prompts a pretrained diffusion policy with a
retargeted human trajectory as the initial noise. Still, this
remains limited to a single video and relies heavily on the
base robot policy. In contrast, our method learns directly
from multiple human demonstrations, storing the knowledge
into a single policy.

Learning from Sub-Optimal Data. As robot datasets
scale, filtering low-quality demonstrations becomes critical.
Prior work down-weights or removes poor trajectories using
online rollouts [45, 46], which is costly, or by proxy loss
metrics [47], which poorly predict real-world performance.
In generative modeling, similar challenges are addressed by
training classifiers to detect data quality under noise and se-
lectively updating diffusion models [48–50]. Inspired by this,
we adapt the idea to robotics: using diffusion policies [1] as
the generative model and treating cross-embodiment human
as a low-quality data source.

III. PROBLEM FORMULATION

Our goal is to learn a robot policy πθ(At|st), which
predicts a sequence of future actions At = at:t+S over the
next S timesteps given the current robot state st. Training
relies on two sources of supervision: a small, high-quality
dataset of robot demonstrations DR and a larger dataset of
human demonstrations DH . Each dataset contains trajecto-
ries of state–action pairs ξ = {st, at}Tt=1. Following prior
work [3, 4], we unify the state and action spaces of humans
and robots: states comprise proprioceptive inputs and third-
person camera views, while actions are represented by the
motion of the human hand or the robot end-effector.

Co-Training of Robot Policies. Cross-embodiment
datasets are typically leveraged for policy learning by co-
training with the robot dataset. A straightforward approach
is to simply combine the robot dataset DR and the human
dataset DH and train on the aggregated mixture:

Lco-train(θ) = E(st,At)∼DR∪DH

[
ℓ
(
πθ(st),At

)]
, (1)

where ℓ denotes the behavior cloning loss function. This
co-training paradigm treats human and robot data as inter-
changeable, assuming human and robot action dynamics are
matched, i.e., pH(At = at:t+S |st) ≈ pR(At = at:t+S |st).
However, differences in embodiment and execution style
mean that human actions are often physically infeasible for
the robot. As a result, naive co-training can significantly
degrade policy performance, motivating the need for more
selective co-training strategies.

IV. APPROACH

Naive co-training on human and robot demonstrations can
degrade performance when execution styles are mismatched.
We present X-DIFFUSION, a framework to maximally utilize
cross-embodiment data for diffusion policy learning without
degrading performance. At its core, X-DIFFUSION trains a
classifier to distinguish between noised human and robot
actions. Noised human actions are integrated into policy
training only when the classifier is confused about its em-
bodiment. This approach allows us to utilize large datasets
of cross-embodiment demonstrations without learning to
execute physically infeasible robot actions.

A. Cross-Embodiment Equivalence under Noise

Due to differences in embodiment, kinematic retargeting
of human hand actions may result in physically infeasible
robot motion. Still, human hand motion provides rich cues
for what steps to follow, which objects to interact with, and
how to interact with them. The usefulness of these cues
depends on their alignment with the robot’s action dynamics.

Diffusion policies [1] learn by denoising action sequences
corrupted with Gaussian noise. Given the ground-truth robot
or human action sequence A0

t , the forward diffusion process
q produces progressively noisier versions A1

t , . . . ,A
K
t via:

q(Ak+1
t | Ak

t ) = N
(√

1− βk A
k
t , βkI

)
, where βk controls the amount of additive Gaussian noise
at diffusion step k. Our key observation is that the forward
diffusion process progressively removes embodiment-specific
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Fig. 3: Visualizing Actions under Noise and Classifier Predictions at various Diffusion Steps. Humans execute tasks in various ways. For example,
when picking and placing a pan, a human can either execute a top-down grasp or a side grasp. Human actions that are feasible for robots (e.g. top-down
grasp) overlap with robot action distribution under low noise timesteps. This data fools the classifier into believing it could have been executed by a robot,
so we include it in the diffusion denoising process during policy training. In contrast, human actions that are kinematically and dynamically infeasible for
robots (e.g. side grasp) are accurately identified as human actions by the classifier until significantly more noise is added in the forward diffusion process,
restricting their impact on policy learning to only supervise coarse guidance at high noise.

features from actions. As shown in Fig. 1, at high noise lev-
els, human and robot trajectories become indistinguishable.

Formally, let pkH and pkR denote the distributions of human
and robot actions after k steps of the forward diffusion
process. We define the minimum indistinguishability step
k⋆ as the earliest diffusion step where the two distributions
overlap such that they cannot be reliably distinguished:

k⋆ = min
{
k
∣∣ DKL

(
pkH ∥ pkR

)
≤ ϵ

}
,

where ϵ is a small threshold. Intuitively, k⋆ identifies the
point in the noising process at which human actions are
sufficiently abstracted that they resemble robot actions. Be-
yond this step (k ≥ k⋆), human demonstrations can provide
effective supervision for robot policy learning without risking
the transfer of infeasible motions.

B. Training a Noised Human-Robot Action Classifier

To determine the minimum indistinguishability timestep
k⋆ for each action, we train a classifier that predicts the
embodiment of a noised action. The classifier cθ(·|k,Ak

t , st)
takes as input the diffusion step k, the noised action sequence
A

(k)
t , and the current state st, and outputs the probability that

the action originated from the robot (y = 1) or a human (y =
0). Training samples are drawn from both the human dataset
DH and the robot dataset DR. Since the size of the human
dataset is much larger than the robot dataset |DH | ≫ |DR|,
we sample actions from both datasets with equal probability
to prevent the classifier from being biased toward predicting

the human label. The classifier is optimized using the binary
cross-entropy loss:

Lclass(θ) = E(k,Ak
t ,st)∼DR

[
− log cθ(k,A

k
t , st)

]
+ E(k,Ak

t ,st)∼DH

[
− log

(
1− cθ(k,A

k
t , st)

)]
.
(2)

The classifier enables us to annotate human demonstrations
with the timestep at which their noised actions become
indistinguishable from robot actions. For each human action
sequence At, we define the minimum indistinguishability
step k⋆ as the earliest diffusion step where the classifier
assigns at least 50% probability to it being a robot action:

k⋆(At) = min
{
k : cθ(k,A

k
t , st) ≥ 0.5

}
. (3)

C. Classifier Integration into Diffusion Policy

Diffusion policies model the reverse process of denoising
with a neural network. Starting from Gaussian noise AK

t , the
reverse model pθ(Ak−1

t | k,Ak
t , st) iteratively denoises step

by step until recovering the clean action sequence A0
t . Each

reverse step attempts to predict a slightly less noisy action,
conditioned on the current state st. Naive co-training (Eq. 1)
supervises the reverse process using human actions across all
diffusion steps. If human data is used indiscriminately at all
noise levels, the policy is forced to denoise toward actions
that may be kinematically infeasible for the robot.

Integration beyond the indistinguishability step. Our
classifier resolves this problem by identifying, for each



Fig. 4: Performance vs. Baselines: We report task success rate on 5 different manipulation tasks and compare X-DIFFUSION against a robot-only baseline
(Diffusion Policy) and various co-training baselines (Point-Policy, MotionTracks). DemoDiffusion is another diffusion-based method, but it doesn’t train
the robot policy on human demonstrations. We find that X-DIFFUSION is the highest performing model on all tasks, effectively incorporating human action
data into its training recipe even when execution styles are mismatched. One human and robot demonstration is visualized for each task.

human action, the minimum indistinguishability step k⋆

where the action distribution sufficiently overlaps with the
robot action distribution under noise. During diffusion policy
training, we only integrate human actions into the loss when
k ≥ k⋆ (using Eq. 2). Fig. 3 shows the minimum indis-
tinguishability step on the Serve-Egg task for different
human actions in the dataset. Actions that are kinematically
feasible for the robot have low k∗ whereas infeasible actions
have higher k∗. Formally, our diffusion policy loss is:

LX-DP(θ) = E(k,At,st)∼DR
ℓ
(
pθ,A

k
t

)
+ E(k,At,st)∼DH

1{k≥k⋆(At)} ℓ
(
pθ,A

k
t

)
,

(4)

where ℓ denotes the denoising loss. This selective integra-
tion ensures that we maximally utilize human demonstrations
without sacrificing kinematic feasibility of action execution.

D. Unifying State and Action Spaces

We convert human videos into robot-aligned state–action
pairs with a minimal pipeline. Assumptions: (i) single-hand
demonstrations that begin with an open grasp, and (ii) two
calibrated RGB cameras. Using HaMeR [6], we detect 2D
hand keypoints in both views and triangulate them to 3D
in the robot frame. The grasp point is the mean of the
thumb and index fingertips; orientation is obtained by fitting
a local hand frame and retargeting to the robot end-effector
following prior work [3, 4]. Gripper state is inferred using the
distance between the thumb and index keypoints. To reduce
the visual domain gap, we segment task-relevant objects with
Grounded-SAM 2 [51] and overlay a keypoint rendering of
the end-effector pose on each frame, as depicted in Fig. 2.
The policy input is the masked image with overlaid key-
points, concatenated with proprioceptive information. More
details are provided in the Appendix.

Fig. 5: Naive co-training learns infeasible robot actions: Including all
human data in policy training can incentivize policies to learn strategies
demonstrated by humans but infeasible for robots. On multiple tasks, a
human may manipulate objects in ways that are not realizable for a robot.

V. EXPERIMENTS

We evaluate the ability of X-DIFFUSION to learn 5 differ-
ent manipulation skills from cross-embodiment human data.
Our experiments are designed to address four key questions:
1) Does X-DIFFUSION outperform prior cross-embodiment

learning approaches?
2) Does naive co-training generate kinematically or dynam-

ically infeasible motion on the robot?
3) How does the learned classifier compare to manual data

filtering via human annotation?
4) How does the usefulness of human data vary across tasks?
Experimental Setup. For each manipulation task, we col-
lect 5 robot demonstrations and 100 human demonstra-
tions. Human demonstrations are performed with a sin-
gle hand, while the robot is a 7-DOF Franka Emika
Panda arm. We evaluate across five diverse tasks:
pick-and-place (Serve Egg), non-prehensile manipulation
(Close Drawer, Push Plate), precise insertion (Mug
On Rack), and reorientation (Bottle Upright). These
tasks span a wide range of manipulation skills and provide a



X-DIFFUSION FILTERED NAIVE ROBOT
Mug On Rack 10/10 8/10 6/10 5/10
Serve Egg 9/10 6/10 5/10 4/10
Push Plate 8/10 6/10 2/10 4/10

TABLE I: We compare the performance of X-DIFFUSION with a pol-
icy trained only on human demonstrations verified as robot-feasible
(FILTERED), a naively trained policy using all available human data
(NAIVE), and a policy trained only on robot data (ROBOT). We find X-
DIFFUSION outperforms all baselines for each task.

comprehensive benchmark for assessing the value of human
data in policy training for different manipulation skills. We
evaluate each method over 10 real-world rollouts per task
and report average success rates.
Baselines. We compare against the following baselines:
1) Diffusion Policy [1]: This method trains only on 5 robot

demonstrations, potentially lacking coverage of the initial
state distribution.

2) Point Policy [4]: This method co-trains on all human and
robot data, unifying the cross-embodiment observation
and actions via hand and object keypoints.

3) Motion Tracks [3]: This method co-trains on all human
and robot data. It unifies the action space as hand key-
points but uses raw RGB image observations.

4) DemoDiffusion [44]: This method conditions a robot-
only diffusion policy with a human trajectory. More
details are provided in the Appendix.

A. Comparison with Cross-Embodiment Learning Baselines.

We evaluate X-DIFFUSION’s ability to learn from human
demonstrations, and compare performance against existing
cross-embodiment policy learning methods. We find that
X-DIFFUSION achieves higher success rates across tasks
relative to Point Policy, Motion Tracks, and DemoDiffusion
(Fig. 4). Qualitatively, we observe that these approaches
share a common failure mode: executing actions that appear
in human demonstrations which are infeasible for the robot,
as shown in Fig. 5. In Push Plate and Serve Egg,
several human demonstrations grasp objects from the side
(instead of top-down), a strategy which is kinematically
infeasible for the robot to perform. Naively co-training with
an uncurated set of human demonstrations yields little to no
improvements (Motion Tracks, DemoDiffusion) over robot-
only training, and can even degrade performance (Point
Policy) by learning suboptimal robot behaviors.

In contrast to all these methods, X-DIFFUSION leverages
its classifier to directly filter out action sequences that have
low probabilities of being classified as a robot trajectory, only
applying the action denoising loss on (noisy) human motions
which are indistinguishable from robot motion. This training
recipe consistently improves performance over robot-only
training and naive co-training by carefully including human
data from a wider state distribution.

B. Comparing Classifier with Manual Human Annotations

To further investigate the human data distribution and its
impact on policy learning, we design an experiment with
a FILTERED policy. We replay human demonstrations on

Push Plate Bottle Upright

Noise Action Distribution Gap 

Fig. 6: Classifier Robot Probability across forward diffusion process:
As the noise levels increase, the human action distribution becomes more
similar to the robot action distribution. The similarity of human actions
with robot actions varies across tasks: as shown on the graphs, the
distance between the human and robot action distributions at every noise
level is smaller for Push Plate data compared to Bottle Upright.
Consequently, we find that our policy improves performance more by
training on the former task.

the robot via Inverse Kinematics (IK) and manually filter
out unsuccessful trajectories to construct D+

H , a dataset of
feasible human demonstrations. Concretely, we train three
policies with the same architecture but vary the data:

• ROBOT: Trained only on DR.
• NAIVE: Trained on DR ∪ DH .
• FILTERED: Trained on DR ∪ D+

H .
• X-DIFFUSION: Trained on DR∪DH , discarding human

data below the minimum indistinguishability step
(Sec. IV) during action denoising.

Table I shows that FILTERED dataset co-training outper-
forms NAIVE co-training, confirming the hypothesis that
the inclusion of infeasible human demonstrations at train
time degrades policy performance. X-DIFFUSION takes an
alternate approach—instead of discarding entire trajectories
and applying the action denoising loss at all noise levels for
successful human trajectories in D+

H , it adaptively includes
human data from DH only beyond noise levels where the
human and robot data distributions are indistinguishable, thus
learning to denoise within the correct distribution for the
robot. We visualize this phenomenon in Fig. 3: as Gaussian
noise is added to human actions, our classifier is unable to
identify which embodiment executed the actions. We also
observe that the minimum indistinguishability step is lower
for feasible human actions than their infeasible counterpart.
X-DIFFUSION outperforms the FILTERED policy across all
tasks, demonstrating the ability to extract signal even from
infeasible human demonstrations.

C. Analyzing Human Data Quality Across Tasks

Human demonstrations are widely unstructured compared
to robot teleoperation, varying in strategy and speed. This
leads to non-uniform performance gains across tasks for all



cross-embodiment methods (Fig. 4). We systematically ana-
lyze the quality of human data, particularly focused on Push
Plate and Bottle Upright. In the Push Plate task,
all cross-embodiment methods outperform robot-only DP,
with the biggest beneficiary being X-DIFFUSION (90% vs.
40%). In contrast, X-DIFFUSION only slightly improved over
DP (20% vs. 10%) on Bottle Upright, while all other
methods dropped to 0% success.

We probe X-DIFFUSION’s learned classifier at various
noise levels for both tasks, and plot the average predicted
robot probability over all the human and robot data in
Fig. 6. Notably, we observe that at low noise regimes, the
classifier is extremely confident and accurate in its class
predictions given Bottle Upright actions as input. For
Push Plate, as noise is added, we quickly see the gap
between human and robot probability gap shrink as their
(noisy) action distributions become more similar, indicating
a strong correlation with the policy success rates. These
observations also support our findings from the data, where
we noticed that Bottle Upright human demonstrations
were (a) much faster than robot execution and (b) prone
to retargeting errors, making them detrimental when naively
co-training without careful data curation. X-DIFFUSION au-
tonomously discards these suboptimal demonstrations with
the learned classifier, avoiding policy degradation.

VI. DISCUSSION

In this paper, we propose X-DIFFUSION, a scalable frame-
work for co-training robot policies on cross-embodiment data
by selectively incorporating human actions according to their
feasibility for the robot. X-DIFFUSION employs a classifier
to determine the noising timestep in the forward diffusion
process at which a human action becomes indistinguishable
from a robot action. By including human data only once
it is sufficiently noised, our approach integrates demonstra-
tions that are compatible with robot execution to provide
strong denoising signal, while filtering out those that could
otherwise degrade performance and generate dynamically
infeasible motion. This enables effective use of large-scale
human datasets that are not curated for robot learning. Our
empirical evaluation across five manipulation tasks shows
that X-DIFFUSION consistently outperforms both robot-only
policies and prior co-training baselines, even when the hu-
man data is of low quality.

Limitations. In our work, we train X-DIFFUSION on
a limited number of robot and human demonstrations in
a calibrated multi-camera environment. Future works will
attempt to train classifiers on large-scale datasets and learn
from unstructured internet-scale human videos.
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APPENDIX

A. Contributions

• Maximus A. Pace: Investigated different algorithms
for using human data in policy learning, set up the
data collection pipeline using teleoperation and human
videos, major role in real world experiments and paper
writing, worked on figure design, and co-led the project.

• Prithwish Dan: Set up the human-robot classifier,
helped in real-world experiments, worked on figure
design, paper writing, and co-led the project.

• Chuanruo Ning: Worked on the perception pipeline,
setting up SAM2 real-world tracking and HaMeR.

• Atiksh Bhardwaj: Contributed to cross-embodiment
learning baseline experiments and data collection.

• Audrey Du: Contributed to cross-embodiment learning
baseline experiments and data collection.

• Edward W. Duan: Contributed to cross-embodiment
learning baseline experiments and data collection.

• Wei-Chiu Ma: Suggested the idea of training diffusion
policies with human actions after adding noise, major
role in designing figures, and co-advised the project.

• Kushal Kedia: Conceived the goals of the project,
suggested baselines and ablations, involved in coding,
major role in paper writing, and co-advised the project.

B. Task Descriptions

We provide descriptions of the tasks described in Sec. V
and Fig. 4.

• Close Drawer: close the top drawer of a cabinet.
The cabinet’s position and rotation is randomized across
a line.

• Serve Egg: pick up a frying pan from stovetop and
place it on a plate. The plate’s location is randomized
across a line.

• Push Plate: move a plate to between the fork and
knife. The position of the fork and knife are randomized
together along the table.

• Mug On Rack: pick up a mug and place its handle on
a peg of a rack. The position of the rack is randomized
across a line.

• Bottle Upright: pick up a juice bottle lying on its
side from the table, reorient it, and release it standing
upright.

C. State and Action Representations

Training a policy on cross-embodiment data requires uni-
fication of the state and action representations. Our datasets
of robot demonstrations DR and human demonstrations DH

contain trajectories of state–action pairs ξ = {st, at}Tt=1.
The embodiment-agnostic state st = {qt, ot} consists of
proprioception qt and a visual observation of the scene ot
at each timestep t. The proprioception qt = {pt, rt, gt} ∈
R7 includes the 3D position pt ∈ R3, rotation rt ∈ R3,
and gripper status gt ∈ R of the end effector. The visual
observation ot ∈ RH×W×3 includes 2D RGB segmentations
of task-relevant objects with end-effector keypoint renderings
overlaid. We simply consider the action at timestep t to be
the proprioception at t + 1, i.e. at = qt+1. We record the
states for each embodiment as follows:

1) Robot Demonstrations: The robot’s proprioception qt
is computed using forward kinematics given its joint angles
and gripper status (e.g. open or closed) at timestep t. Visual
observations ot are obtained by applying Grounded-SAM
2 [51] with language prompts on a single-view RGB capture
of the scene and overlaying end-effector keypoint renderings.

2) Human Demonstrations: We use HaMeR [6] to detect
a set of 21 keypoints in 2D pixel space for each camera.
We select 5 of these keypoints along the index finger and
thumb to be retargeted into a parallel jaw. Using two cameras
with known parameters, we triangulate these keypoints into
the same 3D coordinate frame as the robot to obtain pt
and apply the Kabsch algorithm to compute the rotation rt.
Finally, we calculate the gripper status gt as a function of the
distance between the tip of the index finger and the thumb,
considering it to be closed under a fixed threshold and open
otherwise. Visual observations ot are processed using the
same pipeline as robot demonstrations.

D. Baseline Implementation Details

All policies are trained using the Diffusion Policy [1]
architecture, which consumes our unified state representation
(unless otherwise specified) to predict action sequences.



1) Diffusion Policy: This baseline uses the vanilla Diffu-
sion Policy architecture trained only on a small set of robot
demonstrations.

2) Point Policy: Instead of using segmented images in
its visual observation ot, this baseline represents state via
3D keypoints of relevant objects at each timestep t. The
keypoints are annotated in the first frame of one training
demonstration, and correspondences are automatically de-
tected at the start of all other demonstrations and at inference
time using DIFT [52]. Co-Tracker [53] then tracks each
point over time, and 3D object points are computed via
triangulation from two cameras. This baseline is trained by
equally sampling human and robot demonstrations.

3) Motion Tracks: This baseline consumes the raw RGB
image (without segmentations) and end-effector propriocep-
tion as input. The original paper for MOTION TRACKS uses
a keypoint retargeting network to minimize any gap between
hand and end-effector keypoints, which we alleviate in our
implementation by unifying the proprioception directly into
end-effector position and rotation. This baseline is trained by
equally sampling human and robot demonstrations.

4) DemoDiffusion: This baseline leverages two Diffusion
Policies: human policy πH is trained on the full human
dataset DH , and robot policy πR is trained on the full robot
dataset DR. The reverse diffusion process is completed by
using the human policy πH for the initial denoising steps,
followed by the robot policy πR for the remainder of the
denoising steps. We follow the original paper by using the
human policy πH for the first 60% of denoising steps and
the robot policy πR for the remaining 40%.

E. Diffusion Policy Hyperparameters

We use the same hyperparameters for training
all of our policies and baselines. All of our
policies use Diffusion Policy UNet architecture. The
hyperparameters and values are provided in Table II.

TABLE II: Hyperparameters for Training Diffusion Policy

Diffusion Settings

Diffusion timesteps (training) 100
Diffusion timesteps (inference) 20

Model Architecture

Backbone CNN ResNet50
Policy backbone UNet
Image size 96× 96

Temporal Horizon

Observation horizon 1
Prediction horizon 8
Action horizon 8

Training

Batch size 128
Learning rate 1× 10−4

Weight decay 0
Gradient clipping 5.0
Epochs 30
Gradient Steps Per Epoch 10,000
EMA decay rate 0.01

Evaluation

Validation split ratio 0.15
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